Personalized Stem Cells One Step Closer to Reality

Researchers Create Disease-Specific, Individualized Human Stem Cells

For the first time, scientists have proven that embryonic-like stem cells that are specific to both a person and to a disease can be manufactured using adult human cells.

Personalized stem cells may be the holy grail of science because of their potential to treat and allow the study of a myriad of diseases and conditions. And while there are still a number of hurdles to clear before this advance can be applied to humans, in the clinical setting this latest step, some say, shows promise of eventual human therapies.

Researchers from Harvard and Columbia Universities used skin cells from two patients with Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig's disease, to create stem cells and then reprogrammed them to morph into replacement motor neurons.

"It opens doors to making patient-specific stem cell lines," said Dr. Kevin Eggan, principle faculty member at the Harvard Stem Cell Institute and lead author of a study that was released today in the journal Science. "You can use these cells to make the actual cell type for that person's disease."

People with ALS experience progressive degeneration in their motor neurons to the extent that the brain and spinal cord can no longer signal the body to move. Patients in later stages of the disease often become paralyzed.

Eggan and his colleague, Dr. Christopher Henderson, co-director of the Center for Motor Neuron Biology and Disease at Columbia University and the other lead author, stressed that their study shows "proof of principle" for how embryonic-like stem cells can be created from adult cells using induced pluripotent stem (iPS) cells, a technique introduced widely last year.

Stem cell researchers not involved in the study called the advance promising.

"The hope for iPS cell technology is that you could create cells from your own body to treat your own defects," said Dr. Curt Freed, professor of medicine and pharmacology at the University of Colorado School of Medicine. "They are immunologically matched to yours."

But Freed pointed out that iPS derived stem cells will never be used for therapeutic purposes because the method requires using retroviral genes to copy the cells -- genes which result in cancer-producing cells.

A New Approach

The ideal scenario for stem cells would be to create them by injecting the desired DNA -- DNA that's free from genetic defects -- into human egg cells and letting them become stem cells before reprogramming them into specific cell types, a technique known as somatic cell nuclear transfer (SCNT). But getting human egg donations -- as well as funding for such research -- has been difficult for the researchers.

"The inability to have success with SCNT is wrapped up in logistical and political quagmires," Eggan said.